

Introduction to Device Support

Introduction to Device Support

Eric Norum

Introduction to Device Support

Writing Device Support – Scope

● An overview of the concepts associated with writing EPICS
Device Support routines.

● Examples show the “stone knives and bearskins” approach.
● The ASYN package provides a framework which makes

writing device support much easier.
– The concepts presented here still apply.

Introduction to Device Support

Writing Device Support – Outline

● What is ‘Device Support’?
● The .dbd file entry
● The driver DSET
● Device addresses
● Support routines
● Using interrupts
● Asynchronous input/output
● Callbacks

Introduction to Device Support

What is ‘Device Support’?

● Interface between record and hardware
● A set of routines for record support to call

– The record type determines the required set of routines
– These routines have full read/write access to any record

field
● Determines synchronous/asynchronous nature of record
● Performs record I/O

– Provides interrupt handling mechanism

Introduction to Device Support

Why use device support?

● Could instead make a different record type for each hardware
interface, with fields to allow full control over the provided
facilities.

● A separate device support level provides several advantages:
– Users need not learn a new record type for each type of device
– Increases modularity

● I/O hardware changes are less disruptive
● Device support is simpler than record support
● Hardware interface code is isolated from record API

● Custom records are available if really needed.
– By which I mean “really, really, really needed!”
– Existing record types are sufficient for most applications.

Introduction to Device Support

How does a record find its device support?

Through .dbd ‘device’ statements:

Introduction to Device Support

The .dbd file entry

● The IOC discovers device support from entries in .dbd files
device(recType,addrType,dsetName,”dtypeName”)

• addrType is one of
AB_IO BITBUS_IO CAMAC_IO GPIB_IO

INST_IO RF_IO VME_IO VXI_IO

• dsetName is the name of the C Device Support Entry Table
(DSET)
• By convention name indicates record and hardware type:

device(ai, GPIB_IO, devAidg535, "dg535")

device(bi, VME_IO, devBiXy240, "XYCOM240")

Introduction to Device Support

The DSET
● A C structure containing pointers to functions
● Content dependent upon record type
● Each device support layer defines a DSET with pointers to its

own functions
● A DSET structure declaration looks like:

struct dset {
long number;
long (*report)(int level);
long (*initialize)(int pass);
long (*initRecord)(struct … *precord);
long (*getIoIntInfo)(…);
… read/write and other routines as required

};
● number specifies number of pointers (often 5 or 6)
● A NULL is given when an optional routine is not implemented
● DSET structures and functions are usually declared static

Introduction to Device Support

The DSET – initialize
long initialize(int pass);

● Initializes the device support layer
● Optional routine, not always needed
● Used for one-time startup operations:

– Start background tasks
– Create shared tables

● Called twice by iocInit()
– pass=0 – Before any record initialization

Doesn’t usually access hardware since device address
information is not yet known

– pass=1 – After all record initialization
Can be used as a final startup step. All device address
information is now known

Introduction to Device Support

The DSET – initRecord

long initRecord(struct … *precord);
● Called by iocInit() once for each record with matching DTYP
● Optional routine, but usually supplied
● Routines often

– Validate the INP or OUTP field
– Verify that addressed hardware is present
– Allocate device-specific storage for the record

● Each record contains a void *dpvt pointer for this
purpose

– Program device registers
– Set record-specific fields needed for conversion to/from

engineering units

Introduction to Device Support

The DSET – read/write

long read(struct … *precord);

long write(struct … *precord);
● Called when record is processed
● Perform (or initiate) the I/O operation:

– Synchronous input
● Copy value from hardware into precord>rval
● Return 0 (to indicate success)

– Synchronous output
● Copy value from precord>rval to hardware
● Return 0 (to indicate success)

Introduction to Device Support

The DSET – initRecord – Device Addresses

● Device support .dbd entry was
device(recType,addrType,dset,"name")

● addrType specifies the type to use for the address link, e.g.
device(bo,VME_IO,devBoXy240,"Xycom XY240")

sets pbo>out:
– pbo>out.type = VME_IO

– Device support uses pbo>out.value.vmeio which is a
struct vmeio {
 short card;
 short signal;
 char *parm;
};

● IOC Application Developer’s Guide describes all types

Introduction to Device Support

A simple example (vxWorks or RTEMS)
#include <recGbl.h>
#include <devSup.h>
#include <devLib.h>
#include <biRecord.h>
#include <epicsExport.h>
static long initRecord(struct biRecord *prec){

char *pbyte, dummy;
if ((prec>inp.type != VME_IO) ||
 (prec>inp.value.vmeio.signal < 0) || (prec>inp.value.vmeio.signal > 7)) {
recGblRecordError(S_dev_badInpType, (void *)prec, "devBiFirst: Bad INP");
return 1;
}
if (devRegisterAddress("devBiFirst", atVMEA16, prec>inp.value.vmeio.card, 0x1,
&pbyte) != 0) {
recGblRecordError(S_dev_badCard, (void *)prec, "devBiFirst: Bad VME address");
return 1;
}
if (devReadProbe(1, pbyte, &dummy) < 0) {
recGblRecordError(S_dev_badCard, (void *)prec, "devBiFirst: Nothing there!");
return 1;
}
prec>dpvt = pbyte;
prec>mask = 1 << prec>inp.value.vmeio.signal;
return 0;

}

Introduction to Device Support

A simple example (vxWorks or RTEMS)
static long read(struct biRecord *prec)
{

volatile char *pbyte = (volatile char *)prec>dpvt;

prec>rval = *pbyte;
return 0;

}

static struct {
long number;
long (*report)(int);
long (*initialize)(int);
long (*initRecord)(struct biRecord *);
long (*getIoIntInfo)();
long (*read)(struct biRecord *);

} devBiFirst = {
5, NULL, NULL, initRecord, NULL, read

};
epicsExportAddress(dset,devBiFirst);

Introduction to Device Support

The DSET – report

long report(int level);
● Called by dbior shell command
● Prints information about current state, hardware status, I/O

statistics, etc.
● Amount of output is controlled by the level argument

– level=0 – list hardware connected, one device per line
– level>0 – provide different type or more detailed

information

Introduction to Device Support

A simple example – device support .dbd file

The .dbd file for the device support routines shown on the
preceding pages might be

device(bi, VME_IO, devBiFirst, “simpleInput”)

Introduction to Device Support

A simple example – application .db file

An application .db file using the device support routines shown
on the preceding pages might contain

record(bi, "$(P):statusBit")
{
 field(DESC, "Simple example binary input")
 field(DTYP, "simpleInput")
 field(INP, "#C$(C) S$(S)")
}

Introduction to Device Support

A simple example – application startup script

An application startup script (st.cmd) using the device support
routines shown on the preceding pages might contain

dbLoadRecords("db/example.db","P=test,C=0x1E0,S=0")

which would expand the .db file into

record(bi, "test:statusBit")
{
 field(DESC, "Simple example binary input")
 field(DTYP, "simpleInput")
 field(INP, "#C0x1E0 S0")
}

Introduction to Device Support

Useful facilities
● ANSI C routines (EPICS headers fill in vendor holes)

– epicsStdio.h – printf, sscanf, epicsSnprintf
– epicsString.h – strcpy, memcpy, epicsStrDup
– epicsStdlib.h – getenv, abs, epicsScanDouble

● OS-independent hardware access (devLib.h)
– Bus address → Local address conversion
– Interrupt control
– Bus probing

● EPICS routines
– epicsEvent.h – process synchronization semaphore
– epicsMutex.h – mutual-exclusion semaphore
– epicsThread.h – multithreading support
– recGbl.h – record error and alarm reporting

Introduction to Device Support

Device interrupts
• vxWorks/RTEMS interrupt handlers can be written in C
• VME interrupts have two parameters

– Interrupt level (1-7, but don’t use level 7 on M68k) – often set
with on-board jumpers or DIP switches

– Interrupt vector (0-255, <64 reserved on MC680x0) – often set
by writing to an on-board register

• OS initialization takes two calls

1. Connect interrupt handler to vector
devConnectInterruptVME(unsigned vectorNumber,
 void (*pFunction)(void *),void *parameter);

2. Enable interrupt from VME to CPU

devEnableInterruptLevelVME (unsigned level);

Introduction to Device Support

I/O interrupt record processing

● Record is processed when hardware interrupt occurs
● Granularity depends on device support and hardware

– Interrupt per-channel vs. interrupt per-card
● #include <dbScan.h> to get additional declarations
● Call scanIoInit once for each interrupt source to initialize a

local value:
scanIoInit(&ioscanpvt);

● DSET must provide a getIoIntInfo routine to specify the
interrupt source associated with a record – a single interrupt
source can be associated with more than one record

● Interrupt handler calls scanIoRequest with the ‘ioscanpvt’
value for that source – this is one of the very few routines
which may be called from an interrupt handler

Introduction to Device Support

The DSET – getIoIntInfo

long getIoIntInfo(int cmd, struct … *precord, IOSCANPVT
*ppvt);

● Set *ppvt to the value of the IOSCANPVT variable for the
interrupt source to be associated with this record

● You may call scanIoInit to initialize the IOSCANPVT variable
if you haven’t done so already

● Return 0 to indicate success or non-zero to indicate failure –
in which case the record SCAN field will be set to Passive

● Routine is called with
– (cmd=0) when record is set to SCAN=I/O Intr
– (cmd=1) when record SCAN field is set to any other value

Introduction to Device Support

The DSET – specialLinconv

long specialLinconv(struct … *precord, int after);
● Analog input (ai) and output (ao) record DSETs include this

sixth routine
● Called just before (after=0) and just after (after=1) the value

of the LINR, EGUL or EGUF fields changes
● “Before” usually does nothing
● “After” recalculates ESLO from EGUL/EGUF and the

hardware range if LINR is LINEAR. Doesn’t change ESLO if
LINR is SLOPE.

● If LINR field is appropriate ai record processing will compute
val as
val = ((rval + roff) * aslo + aoff) * eslo + eoff

Ao record processing is similar, but in reverse

Introduction to Device Support

Asynchronous I/O

● Device support must not wait for slow I/O
● Hardware read/write operations which take “a long time” to

complete must use asynchronous record processing
– TI/O > 50 µs – definitely “a long time”
– TI/O < 2 µs – definitely “not a long time”
– 2 µs < TI/O < 50 µs – ???

● If device does not provide a completion interrupt a “worker”
thread can be created to perform the I/O
– this technique is used for message-based (GPIB, USB,

Serial, Ethernet) devices

Introduction to Device Support

Asynchronous I/O – read/write operation

● Check value of precord>pact and if zero:
– Set precord>pact to 1
– Start the I/O operation

● write hardware or send message to worker thread
– Return 0

● When operation completes run the following code from a
thread (i.e. NOT from an interrupt handler)
struct rset *prset = (struct rset *)precord>rset;
dbScanLock(precord);
(*prset>process)(precord);
dbScanUnlock(precord);

● The record’s process routine will call the device support
read/write routine – with precord>pact=1
- Complete the I/O, set rval, etc.

Introduction to Device Support

Asynchronous I/O – callbacks

● An interrupt handler must not call a record’s process routine
directly

● Use the callback system (callback.h) to do this
● Declare a callback variable

CALLBACK myCallback;
● Issue the following from the interrupt handler

callbackRequestProcessCallback(&myCallBack,priorityLow,precord
);

● This queues a request to a callback handler thread which will
perform the lock/process/unlock operations shown on the
previous page

● There are three callback handler threads
– With priorities Low, Medium and High

Introduction to Device Support

The ASYN Support Module

● This should be your first consideration for new device support
● It provides a powerful, flexible framework for writing device

support for
– Message-based asynchronous devices

● In many cases these can be supported with no C
programming at all (ASYN+StreamDevice)

– Register-based synchronous devices

	Writing Device Support
	Writing Device Support – Scope
	Writing Device Support – Outline
	What is ‘Device Support’?
	Why use device support?
	How does a record find its device support?
	The .dbd file entry
	The DSET
	The DSET – initialize
	The DSET – initRecord
	The DSET – read/write
	The DSET – initRecord – Device Addresses
	A simple example (vxWorks or RTEMS)
	Slide 14
	The DSET – report
	A simple example – device support .dbd file
	A simple example – application .db file
	A simple example – application startup script
	Useful facilities
	Device interrupts
	I/O interrupt record processing
	The DSET – getIoIntInfo
	The DSET – specialLinconv
	Asynchronous I/O
	Asynchronous I/O – read/write operation
	Asynchronous I/O – callbacks
	Asynchronous I/O – ASYN

